
Chronic divalproex sodium use and brain
atrophy in Alzheimer disease

A.S. Fleisher, MD
D. Truran, PhD
J.T. Mai, PhD
J.B.S. Langbaum, PhD
P.S. Aisen, MD
J.L. Cummings, MD
C.R. Jack, Jr., MD
M.W. Weiner, MD
R.G. Thomas, PhD
L.S. Schneider, MD
P.N. Tariot, MD
For the Alzheimer’s

Disease Cooperative
Study

ABSTRACT

Objective: We evaluated the effect of the divalproex sodium formulation of valproic acid on brain
volumes using MRI in people with mild to moderate Alzheimer disease (AD) and assessed for
changes associated with behavioral and cognitive effects.

Methods: Eighty-nine of 313 participants randomized to divalproex or placebo in a 24-month,
parallel-group trial received MRI scans at baseline and 12 months. Interval MRI annual percent
changes in whole brain, ventricular, and hippocampal volumes were the primary outcomes of
interest. Change from baseline in clinical outcomes was assessed at 6-month intervals.

Results: There were no baseline differences between active treatment and placebo groups in age,
education, brain volumes, clinical rating scores, or APOE �4 carrier status. The group treated with
divalproex showed a greater rate of decline in left and right hippocampal and brain volumes
(�10.9% and �12.4% vs �5.6% and �6.3%, and �3.5% vs �1.4%, respectively), and a
greater rate of ventricular expansion (24.5% vs 9.9%) (p � 0.001). Mini-Mental State Examina-
tion scores showed a more rapid decline with divalproex through month 12 (placebo � �2.0 �

4.3, divalproex � �3.9 � 4.0) (p � 0.037), although there were no changes on other cognitive,
behavioral, or functional ratings at 12 and 24 months.

Conclusions: Divalproex treatment was associated with accelerated brain volume loss over 1 year
and perhaps with greater cognitive impairment. The long-term clinical effects of these changes
are not known. Neurology® 2011;77:1263–1271

GLOSSARY
A� � amyloid �-peptide; AD � Alzheimer disease; ADAS-cog � Alzheimer’s Disease Assessment Scale–cognitive subscale;
ADCS � Alzheimer’s Disease Cooperative Study; ADCS-ADL � Alzheimer’s Disease Cooperative Study activities of daily
living; ADCS-CGIC � Alzheimer’s Disease Cooperative Study Clinical Global Impression of Change scale; ADNI � Alzheimer’s
Disease Neuroimaging Initiative; ANCOVA � analysis of covariance; BSI � boundary shift integral; CDR � Clinical Dementia
Rating; CDR-SB � CDR sum of boxes score; CMAI � Cohen Mansfield Agitation Inventory; GEE � generalized estimating
equation; ITT � intent-to-treat analysis; MMSE � Mini-Mental State Examination; NPI � Neuropsychiatric Inventory; QOL-
AD � Alzheimer’s Disease Quality of Life scale; SFVAMC � San Francisco Veterans Administration Medical Center; TIV �
total intracranial volume; VPA � valproic acid.

Valproic acid (VPA) administered in the form of divalproex sodium is indicated for treatment
of manic episodes in bipolar disorder, for seizure disorders, and as prophylaxis for migraine
headaches (Depakote package insert, Abbott Laboratories, North Chicago, IL). It has also been
studied for possible anti-agitation effects in Alzheimer disease (AD).1 There are no widely
accepted or clearly effective drug therapies for behavioral management in AD.

In addition to symptomatic management, it has been hypothesized that VPA may have
neuroprotective properties and reduce rates of disease progression in AD.2 Putative mecha-
nisms for this include reduction of neurofibrillary tangle formation by inhibiting glycogen
synthase kinase-3� (GSK-3�), a kinase that phosphorylates tau; protection against neuronal
apoptosis by upregulation of B-cell CLL/lymphoma-2 protein (BCL2); and promotion of
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synaptogenesis by inhibition of histone
deacetylases.3 In cultured rat hippocampal
neurons, valproate prevents excessive cellular
influx of Ca2� due to glutamate and amyloid
�-peptide (A�), protecting against excitotoxic
injury.2 It inhibits A� production and neuro-
nal plaque formation in both cellular and
mouse models, while improving memory in
mouse models of AD.4,5 In contrast to these
putative neuroprotective effects, several stud-
ies have suggested that valproate therapy may
cause reversible brain atrophy and cognitive
impairment.6–10

This report presents results from an MRI
substudy of a 24-month randomized,
placebo-controlled clinical trial of divalproex
sodium (divalproex) for mild to moderate
AD, conducted by the Alzheimer’s Disease
Cooperative Study (ADCS).11 The goal of the
parent study was to determine whether dival-
proex delayed or prevented emergence of agi-
tation or psychosis and slowed cognitive or
functional decline in AD. The goal of this
MRI study was to examine the effects of dival-
proex treatment on brain volumes, and to
assess the effects of divalproex on the relation-
ship between brain morphometry, cognition,
function, and neuropsychiatric symptoms.

METHODS Participants. Trial methods are described in
detail elsewhere.11 Briefly, 313 participants with probable AD12

were recruited from 46 clinical sites in the United States, of
which 19 sites and 172 volunteers participated in the MRI study
from November 2005 through March 2009. The main inclusion
criteria were age �55 years, weight at least 40 kg, Mini-Mental
State Examination (MMSE) score 12–20 inclusive, and a re-
quirement not to have experienced agitation or psychosis since
illness onset.

Standard protocol approvals, registrations, and patient
consents. Results from the primary randomized treatment trial
from which data for this observational MRI subanalysis were ob-
tained are reported separately,11 and registered at clinicaltrials.gov
(NCT00071721). Written informed consent was obtained from
the caregiver and either the patient, if possible, or an authorized
representative. The study was reviewed and approved by the in-
stitutional review board at each site.

Study design. Participants were assigned, randomly, to
double-blind treatment with either divalproex sodium or identi-
cally appearing placebo tablets for 24 months. The primary clin-
ical endpoint was time to emergence of agitation or psychosis,
combined with an assessment of the clinical significance of be-
havioral change rated by the study clinician.11 Structural MRI
scans were acquired at baseline and at 12 months to assess treat-
ment and disease-associated changes in whole brain, hippocam-
pal, and ventricular volumes over time, as a planned secondary

analysis in a subset of participants. Randomization was one-to-

one for the 2 treatment groups in permuted blocks of 4.

Intervention. A 250-mg enteric coated extended-release for-

mulation of divalproex sodium or identical-appearing placebo

tablet was provided by Abbott Laboratories. Participants re-

ceived one tablet daily by mouth for 1 week, then 2 tablets daily

for 1 week; further dose titration occurred in increments of 250

mg, increasing weekly, targeting 10–12 mg/kg/day with mini-

mum dose targets adjusted to weight and to tolerability. After

the initial titration phase, dose reduction was permitted if war-

ranted clinically.

Clinical assessments. Time to emergence of agitation or psy-

chosis was assessed using the Neuropsychiatric Inventory

(NPI).11,13 Secondary clinical aims included delaying the progres-

sion of cognitive, functional, other behavioral and global mea-

sures associated with AD. These secondary aims were assessed

with the Alzheimer’s Disease Assessment Scale–cognitive sub-

scale (ADAS-cog), the Clinical Dementia Rating (CDR),

MMSE, ADCS activities of daily living (ADCS-ADL), the

ADCS Clinical Global Impression of Change scale (ADCS-

CGIC), Cohen Mansfield Agitation Inventory (CMAI), and the

Alzheimer’s Disease Quality of Life scale (QOL-AD).

Imaging acquisition. All MRI scans were performed on

1.5-T scanners (not older than 8 years at the time of study

launch) on various platforms across 19 sites. The imaging se-

quence used for morphometric analyses was an MPRAGE se-

quence developed for the Alzheimer’s Disease Neuroimaging

Initiative (ADNI),14 distributed to study sites from the Mayo

Clinic, Rochester, MN. There were minor variations in the MRI

protocol based on the specific hardware configuration on each

scanner. The nominal parameters of the MPRAGE sequence

were as follows: sagittal plane, repetition time/echo time/inver-

sion time 2,400/3/1,000 msec, flip angle 8°, 24 cm field of view,

192 � 192 in-plane matrix, 1.2 mm slice thickness. A human

and phantom scan was acquired during each scanner session.

Scanner quality monitoring was performed at the Mayo Clinic

using the ADNI phantom.14 All images were transferred for stor-
age and processing over a secure FTP Internet transfer in
DICOM-3 format to a central imaging laboratory at the San
Francisco Veterans Administration Medical Center (SFVAMC).

Image processing. All images were corrected for image distor-
tion due to gradient nonlinearity using GradWarp15 and for in-
tensity inhomogeneity using N316 using a software pipeline
running at Mayo.14

Hippocampal volume segmentation was performed at the
SFVAMC. Semiautomated hippocampal volumetry was carried
out using a commercially available high-dimensional brain map-
ping tool (Medtronic Surgical Navigation Technologies, Louis-
ville, CO), that has previously been validated and compared to
manual tracing of the hippocampus.17 Measurement of hip-
pocampal volume was achieved first by manually placing 22 con-
trol points as local landmarks for the hippocampus on the
individual brain MRI data: 1 landmark at the hippocampal head,
1 at the tail, and 4 per image (i.e., at the superior, inferior,
medial, and lateral boundaries) on 5 equally spaced images per-
pendicular to the long axis of the hippocampus. Second, fluid
image transformation was used to match the individual brains to
a template brain.18 The pixels corresponding to the hippocampus
were then labeled and counted to obtain volumes. This method
of hippocampal voluming has a documented reliability of an
intraclass coefficient better than 0.94.17
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Rates of whole brain atrophy and ventricular expansion were
performed at the Mayo Clinic using a boundary shift integral
(BSI) technique.19,20 Differences were calculated in pairwise fash-
ion between the baseline scan and the follow-up scan. Following
spatial registration of the follow-up scan to the baseline scan,
intensity differences between the 2 scans at the brain-CSF
boundary were used to compute change in brain volume. The
ventricular atrophy rate was derived by creating a binary ventric-
ular mask for each subject that selectively extracted ventricular
change from the BSI. Quality control testing shows that the
intraclass correlation coefficient for test-retest reproducibility of
ventricle rate measurements from short interval serial MRI scans
with this method is 0.91.21

Analysis. Whole brain, total ventricular, and left and right hip-
pocampal volumes were compared between placebo and treat-
ment groups. Annualized percent changes were calculated based
on specific individual durations between follow-up scans and
baseline scans. This was done as an intent-to-treat analysis
(ITT), with an � � 0.05. For cross-sectional analyses, raw vol-
ume measures of each structure at baseline and 12 months were
standardized as a ratio to the subjects’ total intracranial volume
(TIV). Wilcoxon rank sum tests were used to compare TIV stan-
dardized baseline and month 12 MRI measures and annualized
percent volume changes between groups.

Analysis of covariance (ANCOVA) models were used to
evaluate the impact of potential covariates on group differences
in MRI percent volume changes over 12 months. Covariates

were included if a variable was unbalanced between groups (p �

0.05) and was associated with the volumetric outcome measure

being assessed, determined by Spearman rank correlations or

Wilcoxon rank sum where appropriate, using an � error crite-

rion p � 0.1. Potential covariates assessed included age, gender,

MMSE, total NPI, CDR sum of boxes score (CDR-SB), ADAS-

cog, CMAI, ADCS-ADL, years of education, duration of de-

mentia, APOE �4 carrier status, and baseline standardized MRI

volumes. Correlations between 12-month serum divalproex lev-

els and annualized change in MRI volumes were assessed. Gener-

alized estimating equations (GEE) modeling was used for

longitudinal analysis, adjusting for covariates as needed, to assess

group differences in all clinical measures over the entire 24-

month study period between groups in this MRI subcohort. In

addition, between-group differences in all clinical measures were

assessed at baseline, 6-, 12-, 18-, and 24-month time points us-

ing Wilcoxon rank sum tests or Fisher exact tests. Survival anal-

ysis between groups evaluating the primary endpoint of

emergence of neuropsychiatric symptoms over 24 months was

independently evaluated in this MRI subgroup. Descriptive sta-

tistics were performed on demographic variables using 2-sided t
tests and �2, where appropriate.

RESULTS A total of 513 participants were screened
into the 24-month treatment trial with 313 meeting
all enrollment requirements and randomized into the
trial (see the primary treatment trial results for de-
tails11). Of those enrolled, 172 consented for the
MRI substudy and received baseline scans. A total of
149 baseline scans passed planned quality control
measures, with 94 of those participants completing a
12-month follow-up MRI scan. Scans were excluded
for either image quality/artifact issues or due to a
change in scanner between baseline and follow-up.
Five additional 12-month scans failed quality control;
thus a total of 89 individuals were ultimately evaluated
as part of this MRI substudy (46 placebo, 43 dival-
proex) (table 1). Reasons for MRI substudy dropouts
are given in table 2. Eighty-eight individuals had MRI
scans that passed quality control review for hippocam-

Table 1 Demographics, total MRI cohort

Placebo
(n � 46)

Divalproex
(n � 43) p Value

% Female 67 33 0.034

Age, y, mean � SD 76 � 8 73 � 9 0.15

APOE �4, % 78 62 0.16

Education, y,
mean � SD

14 � 4 14 � 3 0.76

Body mass index,
mean � SD

24.9 � 4 26.5 � 4 0.047

Years since Alzheimer
disease diagnosis,
mean � SD

5.2 � 3 4.4 � 2 0.22

Table 2 Reasons for MRI exclusion

When exclusion occurred

Total excluded
% of total
participants

Baseline
scan

Between baseline
and 12 mo

12-mo
scan

Reason subject was excluded

Subject withdrew/was discontinued from
study

0 38 0 38 22.1

Incorrect scan parameters/acquisition 14 0 1 15 8.7

Low scan quality due to movement/artifact 7 0 4 11 6.4

Scan not done/incomplete 0 0 8 8 4.7

Subject was lost to follow-up or died 0 4 0 4 2.3

Subject failed screening 0 3 0 3 1.7

Incorrect scanner used 2 0 0 2 1.2

Clinical abnormalities 0 0 2 2 1.2

Totals 23 46 14 83 48.3
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pal measures at both timepoints (placebo � 45, dival-
proex � 43), 66 for whole brain measures (placebo �
35, divalproex � 31), and 71 for ventricular volumes
(placebo � 38, divalproex � 33).

There were no significant between-group differ-
ences in baseline mean age, education, years since
AD diagnosis, or APOE �4 carrier status. There was a
significantly higher body mass index (p � 0.047)
and fewer female participants (p � 0.034) in the
divalproex group compared to placebo (table 1). The
treatment group had a mean divalproex serum con-
centration of 49.3 � 22.5 �g/mL at 12 months.
There were no significant differences in other base-
line clinical measures (table 3). Comparison of de-
mographic and clinical measures between the MRI

subgroup and the 313 primary trial participants re-
vealed no significant differences.

Analyses of imaging measures revealed no statisti-
cal differences between treatment groups at baseline
or 12 months for hippocampal, whole brain, or ven-
tricular standardized volumes. However, annualized
percent volume changes showed significant group
differences in all volumetric measures (table 4 and
figure). The most pronounced difference was a
change in ventricular volumes of �24.5 � 13.4% in
the divalproex-treated group compared to �9.9 �

5.7% in the placebo group (p � 0.001). Brain vol-
umes changed an average of �3.5 � 1.4% in the
divalproex group compared to �1.4 � 1.1% in
placebo-treated participants (p � 0.001). Annual
hippocampal atrophy showed �10.9 � 7.3% reduc-
tion on the left and �12.4 � 8.8% on the right in
the divalproex group compared to �5.6 � 7.9% and
�6.3 � 8.5%, respectively, in the placebo group
(p � 0.001).

GEE models of clinical assessments over 24
months revealed no group differences in any mea-
sures. Similarly, no differences in the NPI primary
outcome measure were found between groups in sur-
vival analyses. Evaluation of clinical and demo-
graphic measures revealed that sex and BMI,
although unbalanced at baseline, were not associated
with annual percent volume changes. At each
6-month time point between baseline and 24
months, there were no significant group differences
in any clinical measures. However, when group dif-
ferences in clinical measures were assessed for change
from baseline at each trial time point, MMSE alone
was found to have different rates of change between
groups at month 6 and month 12. At month 6, the
mean change in MMSE was �1.04 � 2.6 for the
placebo group and �2.4 � 3.4 for the divalproex
group (p � 0.034). At month 12 the change from
baseline in MMSE was �2.0 � 4.3 for the placebo
group and �3.9 � 4.0 in the divalproex group (p �

0.037). At 18 and 24 months, there were no longer
group differences in MMSE change scores. When
evaluating correlations of baseline ADAS-cog, CDR-
SB, and MMSE scores with annualized volume
changes, only MMSE showed a significant associa-
tion. Baseline MMSE scores were correlated with
right (Spearman rho � �0.38, p � 0.002) and left
(Spearman rho � �0.34, p � 0.006) hippocampal
annualized percent change, but not with whole brain
or ventricular change. In addition, 12-month
MMSE change scores correlated with annualized
MRI percent change in ventricular volumes (Spear-
man rho � �0.34, p � 0.006) and whole brain vol-
umes (Spearman rho � 0.3, p � 0.02), but not with
hippocampal volumes. For this reason, 12-month

Table 3 Baseline clinical measures

Placebo
(n � 46)

Divalproex
(n � 43)

p
Value

MMSE 17.3 � 2.8 18.1 � 2.7 0.18

NPI 2.5 � 2.7 1.8 � 2.5 0.18

ADCS-ADL 57.3 � 12.7 59.7 � 10.4 0.58

ADAS-cog11 28.5 � 9.2 26.3 � 8.0 0.32

CMAI 13.5 � 12.5 11.0 � 9.8 0.43

CDR-SB 6.8 � 2.8 6.0 � 2.5 0.11

Abbreviations: ADAS-cog11 � Alzheimer’s Disease Assess-
ment Scale–cognitive subscale; ADCS-ADL � Alzheimer’s
Disease Cooperative Study activities of daily living; CDR-
SB � Clinical Dementia Rating sum of boxes; CMAI � Cohen
Mansfield Agitation Inventory; MMSE � Mini-Mental State
Examination.

Table 4 MRI volumetric comparisonsa

Placebo Divalproex p Value

Whole brain volume n � 35 n � 31

Baseline 0.80 � 0.07 0.81 � 0.08 0.35

12-month 0.79 � 0.06 0.78 � 0.08 0.89

Annual change, % �1.4 � 1.1 �3.5 � 1.4 �0.001

Ventricular volumes n � 38 n � 33

Baseline, % TIV 0.045 � 0.018 0.041 � 0.015 0.23

12-month, % TIV 0.049 � 0.019 0.049 � 0.016 0.83

Annual change, % 9.9 � 5.7 24.5 � 13.4 �0.001

L hippocampal volumes n � 45 n � 43

Baseline 0.0011 � 0.0003 0.0011 � 0.0003 0.18

12-month 0.0009 � 0.0003 0.0009 � 0.0002 0.90

Annual change, % �5.6 � 7.9 �10.9 � 7.3 �0.001

R hippocampal volumes n � 45 n � 43

Baseline 0.0011 � 0.0003 0.0012 � 0.0002 0.19

12-month 0.0010 � 0.0003 0.0010 � 0.0002 0.84

Annual change, % �6.3 � 8.5 �12.4 � 8.8 �0.001

Abbreviation: TIV � total intracranial volume.
a Baseline and 12-month volumes presented as percent of total intracranial volumes. Vari-
ance reported as standard deviations.
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MMSE change scores were added as covariates to
ANCOVA models assessing group differences in
MRI annual percent volume changes. All annual
percent volume changes remained significantly
different between groups in these models (p �
0.01). Finally, annual percent change in whole
brain (rho � �0.46, p � 0.014) and ventricular
volumes (rho � 0.61, p � 0.0005) but not hip-
pocampal volumes correlated with month 12 di-
valproex serum concentrations.

DISCUSSION We observed unexpected increased
rates of brain volume loss associated with divalproex
sodium in elderly individuals with AD. Over 24
months we found no cognitive, neuropsychiatric, or
functional differences noted between groups, and no
overall differences in cognitive change over time,
consistent with the negative findings in the larger
primary 24-month treatment trial.11 However, the
divalproex MRI subgroup experienced an accelerated

decline in MMSE scores in the first 12 months of the
trial, without similar findings in other global cogni-
tive tests.

Reversible encephalopathy is a rare complication
associated with VPA treatment.22,23 This is variably
related to hepatotoxicity and hyperammonemia.24,25

Even in the absence of frank valproate-induced hy-
perammonemic encephalopathy, there are reports of
reversible cognitive deficits associated with VPA
use.7,10 One prospective study of 36 epilepsy patients
(age ranging from 22 to 74) with VPA levels in the
normal therapeutic range reported an 86% incidence
of cognitive impairment, with degree of cognitive ad-
verse effects highly associated with increased age. A
total of 72% improved after discontinuing VPA.26

Since patients with AD are likely sensitive to other
neurotoxic insults27,28 it is possible that the same po-
tentially neurotoxic effects of divalproex associated
with brain volume loss in the first 12 months of this

Figure Annualized percent volume changes

Percent volume changes in placebo and divalproex treatment groups between baseline and month 12 MRI scans. Mean
values represented by horizontal bar. All group differences are significant, p � 0.001. DVPX � divalproex sodium.
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longitudinal study also caused the initial rapid
decline in MMSE scores observed here. Notably,
analysis of adverse events and laboratory data from
the primary ADCS divalproex treatment trial showed
no evidence of significant neurotoxicity in any par-
ticipants during the 24-month study.11

Transient reversible brain atrophy is a known, but
rare, observed adverse reaction to valproate sodium
and VPA therapy.6,7,10,29–31 The drug prescribing in-
formation states that “several reports have noted re-
versible cerebral atrophy and dementia associated
with valproate therapy.” However, mechanisms un-
derlying these brain changes are poorly understood,
with no previous reports in elderly individuals with
AD. Possibilities include divalproex-related osmotic
changes, neurotoxicity, and acceleration of AD pa-
thology. Valproate has been shown to decrease brain
levels of myoinositol (MI), a known brain osmolyte,
and upregulate glycine on magnetic resonance spec-
troscopy even in the absence of clear hyperammone-
mia.23,30 This may support a theory of global or
localized osmotic shifts associated with the brain vol-
ume changes demonstrated in the present study. De-
spite evidence of potential neuroprotective properties
of divalproex,3 there may be neurotoxic effects simi-
lar to those causing hepatotoxicity and hyperam-
monemia from divalproex-induced impairment of
mitochondrial �-oxidation and urea cycle activ-
ity.30,32 Divalproex may further exacerbate mitochon-
drial toxicity in people with existing genetic
sensitivity (such as Pro to Ser/MTATP8 mutations)7

or other mitotoxic disorders such as AD.33,34 One
study recently demonstrated VPA to reversibly in-
hibit neurofilament production and neurite out-
growth.35 This suggests the possibility that VPA may
exacerbate or accelerate the neurodegenerative pro-
cess of AD. Finally, VPA may inhibit A� production
and neuronal plaque formation,5 as well as accelerate
microglial phagocytosis of A�1–42.36 No measure of
CSF or cerebrocortical amyloid was performed in the
current study. It is interesting to note, however, that
AN1792, a synthetic amyloid-� peptide vaccine
shown to reduce cortical amyloid in patients with
AD, also resulted in brain, ventricular, and hip-
pocampal changes similar to those seen in this
study.36,37 Notably, the annual rates of cortical atro-
phy in our placebo group were consistent with previ-
ously reported rates in similar AD cohorts.38–41

Interpretations of these results are limited with
respect to clinical and pathologic implications. In
particular, we do not have imaging data after 24
months of divalproex treatment or after discontinua-
tion of drug. Therefore it is not known if, like the
MMSE scores, brain volumes later reverted to match

the placebo group by the end of this 24-month trial,
potentially representing a transient effect of dival-
proex treatment. And we do not know if these effects
were reversible after divalproex discontinuation, or
had an impact on future AD decline and prognosis.
This pre-planned region-of-interest assessment of
whole brain, ventricular, and hippocampal volumes
does not allow us to infer that the morphologic ef-
fects associated with divalproex treatment were due
to acceleration of AD pathology, vs nonspecific
global neurotoxicity. We cannot advocate additional
divalproex or VPA treatment trials in dementia given
the risks and potentially detrimental findings pre-
sented here.
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